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Abstract
It is well known that the four families of classical orthogonal polynomials
(Jacobi, Bessel, Hermite and Laguerre) each satisfy an equation FPn(x) =
λnPn(x), n � 0, for an appropriate second-order differential operator F . In
this paper it is shown that any linear differential operator U which has the
Jacobi, Bessel, Hermite or Laguerre polynomials as eigenfunctions has to be a
polynomial with constant coefficients in the classical second-order operator F .

PACS number: 02.30.Gp

1. Introduction

The systems of orthogonal polynomials associated with the names of Hermite, Laguerre, Bessel
and Jacobi (including the special cases named after Chebyshev, Legendre and Gegenbauer) are
the most extensively studied and widely applied systems. These four families of orthogonal
polynomials are called collectively the ‘classical orthogonal polynomials’.

In 1929, Bochner posed a problem of determining all families of scalar-valued orthogonal
polynomials that are eigenfunctions of some fixed second-order linear differential operator.
This problem was solved by Bochner in the original paper [1], and was considered many
times later, for example by Grünbaum and Haine in [2]. The only families of orthogonal
polynomials that are eigenfunctions of some fixed second-order linear differential operator

FPn(x) = λnPn(x)

are the classical ones with the classical differential operators F listed below:

(i) Jacobi. The classical differential operator is

F = x(1 − x)
d2

dx2
+ (α + 1 − (α + β + 2) x)

d

dx
, (1)

with

λn = −n(n + α + β + 1) and α, β > −1;
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(ii) Bessel. The classical differential operator is

F = x2 d2

dx2
+ (2x − 1)

d

dx
, with λn = n(n + 1); (2)

(iii) Hermite. The classical differential operator is

F = d2

dx2
− 2x

d

dx
, with λn = −2n; (3)

(iv) Laguerre. The classical differential operator is

F = x
d2

dx2
+ (α + 1 − x)

d

dx
, with λn = −n. (4)

A natural question is to classify all differential operators which have Jacobi, Bessel, Hermite
or Laguerre polynomials as eigenfunctions. This issue is addressed in the next section.

2. Classical orthogonal polynomials and differential operators

In this section linear differential operators having classical orthogonal polynomials as
eigenfunctions are described.

The following lemma summarizes some preliminary facts that will be used later in the
paper.

Lemma 1. Given a family of orthogonal polynomials {Pn(x)}∞n=0 and a linear differential
operator U of order s such that

UPn(x) = �nPn(x), (5)

where

U =
s∑

i=0

fi(x)
di

dxi
; (6)

fi(x) are polynomials in x of degree i and �n depend on n but not on x. Then

(i) the operator U has to be of even order, i.e. s = 2k;
(ii) the operator U is uniquely defined by Pn(x) and �n for n = 0, . . . , s.

Proof.

(i) It was proved by Krall in [4] that there is no differential operator of type (6) of odd order
which has orthogonal polynomials as solutions, hence s = 2k.

(ii) Starting from j = 0 one can go up to j = s and substitute Pj (x) into (5). Comparing
coefficients going with the powers xm for all m = 0, . . . , j determines fj (x). �

Theorem 1. Given a family of classical (Jacobi, Bessel, Hermite or Laguerre) orthogonal
polynomials {Pn(x)}∞n=0. Suppose there exists a differential operator

U =
2k∑

i=0

fi(x)
di

dxi
, k > 1,

such that

UPn(x) = �nPn(x), (7)
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where �n is a function of n but not x. Then

U =
k∑

j=0

cjF j ,

where cj ∈ C and the second-order differential operator F such that

FPn(x) = λnPn(x), (8)

is the classical differential operator associated with each family, see (1)–(4).

Proof. First we will show that the coefficients fj (x) are polynomials of degree �j . Following
the discussion of Bochner in [1], we substitute P0(x) into (7) and conclude that f0(x) has to
be a constant function in x. Substituting P1(x) into (7) shows that f1(x) has to be linear in x.

By continuing this process one concludes that fi(x) has to be a polynomial of degree at most i
for all i = 0, . . . , 2k. Denote fi(x) = ∑i

j=0 ai
j x

j . After substituting a polynomial Pn(x) into
(7) and comparing coefficients going with the xn one obtains that

�n = (n) · · · (n − 2k + 1) a2k
2k + (n) · · · (n − 2k + 2) a2k−1

2k−1 + · · · + a0
0 .

To simplify the notation, denote

(m)n := m(m + 1) · · · (m − n + 1); (m)0 = 1. (9)

Case 1. λn is linear in n (Hermite, Laguerre). Suppose �n is of some degree s such that s > k

(or s < k). Since λn is linear in n, there must exist coefficients cj such that �n = ∑s
j=0 cjλ

j
n,

where cs �= 0. The differential operator R = ∑s
j=0 cjF j has order exactly 2s > 2k (or

2s < 2k) and it is easy to see that RPn(x) = �nPn(x). However, in lemma 1 it was observed
that the differential operator is uniquely defined by the polynomials Pn(x) and �n, which
implies that R must be identical to U and s = k. Since R ≡ U, then �n must be of degree
exactly k, implying that

�n =
k∑

j=0

cjλ
j
n and U =

k∑

j=0

cjF j .

Case 2. λn is quadratic in n (Jacobi, Bessel). Let us introduce a new differential operator
U1 = U − ckFk. The coefficient ck is chosen in such a way that the coefficient in front of the
term d2k/dx2k of the operator U1 is a polynomial of degree at most 2k − 1 instead of 2k. It is
possible to do so since the operator F s is an operator of order 2s with the polynomial of degree
exactly 2s in front of the term d2s/dx2s for any s. The same procedure can be repeated to
obtain an operator U2 = U1 − ck−1Fk−1, with the coefficient in front of the term d2k−2/dx2k−2

of the operator U2 being a polynomial of degree at most 2k − 3. Continuing this process one
arrives at

Uk = U −
k∑

j=0

cjF j and �̄n = �n −
k∑

j=0

cjλ
j
n

such that

UkPn(x) = �̄nPn(x). (10)

Denote the coefficient associated with the term dj /dxj (j = 0, . . . , 2k) of the operator Uk

to be a polynomial fj (x) = ∑j

i=0 a
j

i x
i of degree at most j. By our construction above, the

coefficient in front of the term d2j /dx2j is a polynomial of degree 2j − 1, i.e. a
2j

2j = 0 for all
j = 0, . . . , k. Note that as a result of the procedure described above, �̄n as a polynomial in n



6382 L Miranian

has only odd powers of n. Below it will be shown that �̄n ≡ 0, which will imply that Uk ≡ 0,

hence U = ∑k
j=0 cjF j .

Denote the nth Jacobi (or Bessel) polynomial

Pn(x) =
n∑

j=0

Bjx
j . (11)

Substitute expression (11) into (10) and collect the terms going with each xm for m = 0, . . . , n

to obtain a (2k + 1)-term recursion relation for the coefficients Bj , where notation (9) is used:

(m + 2k)2ka
2k
0 Bm+2k + (m + 2k − 1)2k−1

(
ma2k

1 + a2k−1
0

)
Bm+2k−1 + · · ·

+ (m + 1)
(
(m)2k−1a

2k
2k−1 + (m)2k−2a

2k−1
2k−2 + · · · + a1

0

)
Bm+1

+
(
(m)2ka

2k
2k + (m)2k−1a

2k−1
2k−1 + · · · + a0

0 − �̄n

)
Bm = 0. (12)

By substituting expression (11) into (8) where the classical differential operator F corresponds
to the family of the Jacobi polynomials (see [1]), one obtains another recursion relation for
the coefficients Bj :

Bm+1 = Bm

m(m + α + β + 1) − n(n + α + β + 1)

(m + 1)(m + α + 1)
. (13)

From the expression above it follows that for any s � 1

Bm+s = Bm

vm · · · vm+s−1

(m + s)s(m + α + s)s
, (14)

where vm = m(m + α + β + 1)−n(n + α + β + 1). After substituting (14) into (12), one obtains
vm · · · vm+2k−1

(m + α + 2k)2k

a2k
0 Bm +

(
ma2k

1 + a2k−1
0

) vm · · · vm+2k−2

(m + α + 2k − 1)2k−1
Bm + · · ·

+
(
(m)2k−1a

2k
2k−1 + (m)2k−2a

2k−1
2k−2 + · · · + a1

0

) vm

(m + α + 1)
Bm

+ (�̄m − �̄n)Bm = 0.

After dividing by Bm and reducing the expression above to the common denominator one
arrives at:

vm · · · vm+2k−1a
2k
0 + vm · · · vm+2k−2(m + α + 2k)1

(
(m)1a

2k
1 + a2k−1

0

)
+ · · ·

+ vm(m + α + 2k)2k−1
(
(m)2k−1a

2k
2k−1 + (m)2k−2a

2k−1
2k−2 + · · · + a1

0

)

+ (m + α + 2k)2k(�̄m − �̄n) = 0. (15)

Note that vm · · · vm+2k−s is a polynomial in n of degree 2(2k − s + 1); hence expression (15)
is a polynomial in n of degree 4k where the n dependence comes from the terms vj and �̄n,

where �̄n is at most of degree 2k. This implies that the coefficients in front of vm · · · vm+s for
s = k, . . . , 2k − 1 are zero. Now the highest degree of n in expression (15) is 2k and the
coefficient in front of n2k is

(m + α + 2k)k
(
(m)ka

2k
k + · · · + ak

0

) − (m + α + 2k)2ka
2k
2k = 0.

By our construction a2k
2k = 0; hence the coefficient in front of vm · · · vm+k−1 is zero. The next

highest degree of n in expression (15) is 2k − 1 and it comes from �̄n since vm · · · vm+k is
of degree 2k − 2. This implies that a2k−1

2k−1 must be zero, which means that the polynomial �̄n

must be of degree at most 2k − 2. By repeating the argument above and using the fact that
a2k−2

2k−2 = 0, we conclude that �̄n must be of degree at most 2k − 4 and by continuing this
process we arrive at the conclusion that �̄n ≡ 0.
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In case of the Bessel polynomials the recursion relation (13) becomes (see [1])

Bm+1 = Bm

m(m + 1) − n(n + 1)

m + 1
.

Expression (15) is now

vm · · · vm+2k−1a
2k
0 + vm · · · vm+2k−2

(
ma2k

1 + a2k−1
0

)
+ · · ·

+ vm

(
(m)2k−1a

2k
2k−1 + (m)2k−2a

2k−1
2k−2 + · · · + a1

0

)
+ (�̄m − �̄n) = 0.

An argument identical to the one presented for the Jacobi case applies to the Bessel case
allowing one to conclude that �̄n ≡ 0. This implies that Uk ≡ 0; hence

U =
k∑

j=0

cjF j ,

which concludes the proof of the theorem. �
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